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ABSTRACT 

Proxies are used commonly on today’s Internet. On one hand, end users can choose to use 

proxies for keeping their privacy and ubiquitous systems can use it for intercepting the traffic for 

purposes such as caching. On the other hand, attackers can use such technologies to anonymize 

their malicious behaviours. Thus, the prevalence of proxies and the different applications and 

users connected through a proxy has implications in terms of the different behaviours seen on the 

network. This is important for defense applications since it can facilitate the assessment of 

security threats. Thus, systems that can identify infected computers behind a proxy based on their 

behaviour represent a first step in taking the appropriate actions, for example, when a botnet 

client is identified. The objective of this research includes identifying proxies and the computers 

behind them based on their behavior from the traffic log files of a computer, which is on the 

network that is outside of the proxy. This is what we mean by traffic de-anonymizer. To achieve 

this: (i) we employ a mixture of log files to represent real-life proxy behavior, and (ii) we design 

and develop a data driven machine learning based approach to provide recommendations for the 

automatic identification of computers behind an anonymous proxy. Our results show that we are 

able to achieve our objectives with a promising performance even though the problem is very 

challenging. 
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INTRODUCTION 

A proxy server is a host, which intercepts the network traffic in order to manipulate some of 

its properties. For example, most commonly known proxy is a web caching proxy that is 

originally invented to enhance the performance of web browsing by intercepting the traffic to 

check whether the requested web object is on the proxy cache or not.  

However, today proxies are used also to meet the need for anonymous web surfing [1]. In this 

case, users can anonymously surf the web without revealing their own IP (Internet Protocol) 

addresses by using a proxy server as a stepping-stone. Technically, a user’s online activity goes 

to the proxy first, which handles and sends along the user’s requests for information, data, files, 

email, etc. In each case, the user’s actual IP address is hidden once it goes through a proxy. 

Actually, most of the times when a proxy server retrieves information (objects) from web sites, it 

provides only its own identity to the sites visited. In this way, users connections look as if they 

are targeting the proxy server rather than the services they request. This feature of proxy servers 

is very advantageous to users especially when they are forced to use stepping stones in order to 

access Internet services that are blocked by their governments, service providers or 

organizations. Therefore, when proxy servers are used in such situations then the address based 

censorship mechanisms would fail.  

Having said this, while web surfing over a proxy is an effective way to protect one’s 

anonymity and freedom of speech, it is also like a double-sided sword, it may raise security 

problems, too [1]. In other words, attackers can use it to hide their anonymity as well! Under 

such a scheme, users are no longer accountable because their identity from the server’s 

perspective is not trustworthy. Normally, a server identifies a user (client) by its IP address. 

However, any user can easily access a server via an unaccountable proxy, not to mention 
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malicious users. Therefore, a server can no longer assure whether the IP address associated with 

a connection is actually the address of a client or that of a stepping-stone, i.e. proxy. Moreover, 

in the context of malicious users, the usage of a proxy is usually associated with botnets, which 

have become a common infrastructure for cyber threats and online crime. On one hand, bots are 

often offered or sold as proxies to anyone who does not want to be traced for their activities on 

the Internet. On the other hand, because the use of proxies increases the difficulty to trace the 

originator, they can be used by bots or by regular users.  

The major challenge to the above problems lies in the lack of the capability to unambiguously 

identify the originator of a web request, i.e. the originator of the traffic. When a server receives a 

request such as a HTTP (HyperText Transfer Protocol) request from a host (client machine), 

there is no systematic way to determine whether the host itself generates the request, or it is 

relaying the request for another host. To the best of our knowledge, there is no general method 

available for detecting the use of proxies from the server’s perspective. 

Therefore in this research, we study and evaluate a machine learning based approach on 

different types of data sets to understand how far we can push this approach to identify the 

incoming proxy base traffic on the server side. The objective of this research includes identifying 

proxies and the clients behind them based on their behaviour from the traffic log files that are on 

the network that is outside of the proxy firewall. To this end, by using a machine learning based 

approach we employ a holistic approach without looking into the content of the traffic and 

without checking a static feature such as trying to block proxy traffic using known proxy IP 

addresses or proxy identifiers in web log files. To achieve this, we (i) employ a mixture of log 

files to represent real-life proxy behavior, and we (ii) design and develop a data driven machine 

learning based approach to provide recommendations for the automatic identification of traffic 
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from an anonymous proxy. Finally, we investigate all of the above under both encrypted and 

non-encrypted traffic conditions. Our results are very promising in terms of identifying traffic 

systematically coming from proxies. 

 

1. BACKGROUND 

Most proxy servers simply allow a user to surf web sites on the Internet without having the 

user’s browser type, IP address and other header information sent to the website that the user is 

viewing. It simply means that the web server of the website does not receive such information 

because the proxy server blocks it. So in the end, the servers that a user visits will not be able to 

determine the properties of the user’s host such as its IP address etc. They may only know the 

proxy server was there, which raises another area of caution. Some sites may deny access to 

servers via known proxy servers. 

As discussed earlier, a web proxy server, hereafter will be refereed as a proxy, serves the 

user’s requests by connecting directly to the source (the original site that has the requested 

information) or by serving it from a cache, a copy of the requested information stored on the 

proxy because the information is requested often by many users. Web proxy caching is a way to 

store requested Internet objects (e.g. data like web pages) available via the HTTP protocol on a 

system closer to the requesting site. Web browsers can then use the local HTTP proxy cache, 

reducing access time as well as bandwidth consumption. This is often useful for Internet service 

providers or other organizations where many users share the bandwidth, because it enables the 

organization to increase timely delivery of information to its users.  

Proxies come in different varieties: 
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• Transparent proxy: This type of proxy identifies itself as a proxy to the visited server. 

Moreover, it reveals the user’s IP address, so it will not hide the user’s identity. 

• Anonymous Proxy: This type of proxy identifies itself as a proxy server. It is detectable 

(as a proxy), but provides reasonable anonymity for most users by hiding their IP 

addresses. 

• Distorting Proxy: This type of proxy identifies itself as a proxy server, but creates an 

"incorrect" originating IP address available through the "HTTP" headers. So it provides 

anonymity by creating a false “identity”. 

• High-Anonymity Proxy: This type of proxy does not identify itself as a proxy server and 

does not reveal the original IP address of a user. 

In this research, we are going to look into high-anonymity proxies in more detail since they 

are the most challenging ones to identify in network traffic logs. 

2. SQUID PROXY SERVER 

Squid is a caching proxy [2] for the Web supporting HTTP, HTTPS, FTP, and more. It 

reduces bandwidth and improves response times by caching and reusing frequently-requested 

web pages. Squid has extensive access controls and makes a great server accelerator. It runs on 

most available operating systems, including Windows and is licensed under the GNU GPL. 

Squid was originally developed as the Harvest object cache, part of the Harvest project at the 

University of Colorado at Boulder. Further work on the program was completed at the University 

of California, San Diego and funded via two grants from the National Science Foundation. 

Duane Wessels forked the “last pre-commercial version of Harvest” and renamed it to Squid to 

avoid confusion with the commercial fork called Cached 2.0, which became NetCache. Squid 



11 
 

version 1.0.0 was released in July 1996. Squid is now developed almost exclusively through 

volunteer efforts. 

Currently Squid is used by hundreds of Internet Providers worldwide to provide their users 

with the best possible web access. Squid optimizes the data flow between client and server to 

improve performance and caches frequently-used content to save bandwidth. Squid can also 

route content requests to servers in a wide variety of ways to build cache server hierarchies that 

optimize network throughput. Thousands of web sites around the Internet use Squid to improve 

their content delivery. Squid can reduce the server load and improve delivery speeds to clients. 

Squid can also be used to deliver content from around the world - copying only the content being 

used, rather than inefficiently copying everything. Finally, Squid's advanced content routing 

configuration allows one to build content clusters to route and load balance requests via a variety 

of web servers. 

The Squid system can run at a hit-rate of approximately 75%, effectively quadrupling the 

capacity of the Apache servers behind them. This becomes particularly noticeable when a large 

surge of traffic arrives directed to a particular page via a web link from another site, as the 

caching efficiency for that page can be nearly 100%. 
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Figure 1: How Squid Proxy Server Works [2]  

 

In the above figure, Figure 1, the Squid proxy caches the web content of krizna.com from the 

ISP (Internet Service Provider) during the first request and then it delivers the cached content for 

the further requests of krizna.com without requesting it from the original server. This will reduce 

bandwidth and will increase response time as the content is delivered from a local server, i.e. 

Squid proxy. 

In this research, to create our proxy traffic data set, the Squid proxy server is chosen because 

Squid has some features that makes very suitable for researching on proxy traffic. First of all, 

Squid is a free and open source proxy server. Secondly, it is widely used by the Internet Service 

Providers (ISPs) all over the world. This enables the results of this research to potentially be used 

in practice. Finally, Squid can help anonymize connections, such as disabling or changing 

specific header fields in a client's HTTP requests. Last but not the least, the Squid proxy server 

can also be configured as a high anonymity proxy to not identify itself as a proxy server, so that 
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the web servers cannot recognize (under normal conditions) that the traffic is coming from a 

proxy server! 

3. GENERATING PROXY DATA SETS 

To generate our proxy dataset, we have set up the following network, Figure 2: 

 

 

Figure 2: Our Testbed Network for Generating the Proxy traffic 

 

As you can see in the figure, to generate our data sets, we have created three separate 

networks. These are: 

• Local Proxy Network: This network is located in the Dalhousie University and directly 

connected to the Proxy server. The only way that this network can access to the Internet 

is to go through the Proxy server. 
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• Remote Proxy Network: This network is located outside the Dalhousie University, and 

connected to the Proxy server through the Internet. This network is configured to forward 

all of its traffic through the proxy server.  

• Direct network: This network is directly connected to the Internet without using a proxy 

server. 

To generate our data sets, we have used 500 website URLs that is provided by Alexa. This 

URL list, Appendix A, is then used to generate HTTP requests under different scenarios using 

the different proxy networks described above. 

 In the first scenario, all the HTTP requests to 500 Alexa websites are generated on the direct 

network and captured at the edge router. This traffic can be used to investigate the behaviors of 

the normal unencrypted HTTP traffic in our research. 

Then, we implemented two scenarios for generating proxy traffic. In this case, (i) the proxy 

and the client can be both on the same network, we call this local proxy; or (ii) the proxy and the 

client could be on different networks, we call this remote proxy. In these two scenarios, namely 

local proxy and remote proxy, the proxy traffic generation process is repeated several times, each 

time with a different configuration mode of the Squid proxy server to understand how these 

configurations could affect the identification of proxy traffic. Different modes of the Squid proxy 

server include: 

• Configuring the proxy server in the No-Cache mode, so that the proxy server just relays 

the traffic between the users and the web servers. 

• Configuring the proxy server in the cache mode. In this case we, have generated two 

datasets: 
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o The cache server is empty, so that the proxy server has to refer to the web servers 

for every single request by the users, but at the same time it caches the traffic. 

o The cache server has already cached the requests to the 500 web sites, so at this 

time the proxy server can response some of users’ requests from its own cache. In 

this case, the generated traffic is lower than the previous mode. 

 

Figure 3: The Categories of the Generated Unencrypted Proxy Datasets in the NIMS Lab. 

 

Figure 3 presents the category of each generated data sets. The 6 blue boxes indicate the 6 

different generated proxy data sets. Once we generated these 6 proxy data sets, we have found 

that the default configuration of the Squid proxy server is in the transparent proxy mode. It 

means that the Squid proxy server embeds all the information about the users in the http user 

agents. To understand what exactly Squid proxy reveals in this mode, we use the following web 

site: 
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URL-1: http://pgl.yoyo.org/http/browser-headers.php 

Figure 4 shows the information revealed about the client who accesses the above URL on the 

direct network we set up (without a proxy). 

 

Figure 4: A Sample of the http User Agent without Using Proxy 

 

Figure 5 shows the information revealed about the client who accesses the above URL via Local 

or Remote Proxy, where Squid Proxy is running in the transparent mode. 

 

Figure 5: A Sample of the http User Agent in a Proxy Network with Default Configuration 
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As one can see in the above figure, when the proxy server is in the transport mode, it sends all 

the information of its client(s) to the web server that the client is accessing via the proxy. This 

enables the web server to infer that the traffic is coming from a host (client computer) behind the 

proxy server. In this case, the web server receives from the proxy running in the transparent 

mode also the local IP address of the client accessing its services. In the example given above, 

Figure 5, the local IP address of the client behind the proxy is: 192.168.100.6 

There is also another well known website that shows if a user is currently behind a proxy 

server or not. Its URL is the following: 

URL-2: http://www.whatismyip.com/ 

If a user visits this website at URL-2 from a network, which is not behind a proxy/firewall, in 

other words something like the direct network scenario, then the user should see something 

similar to Figure 6: 

 

Figure 6: Visiting whatismyip Website (URL-2) on a Direct Network 

 



18 
 

But if a user visits this website from a computer in the local or remote proxy network, i.e. a 

network behind a proxy/firewall, then one can see something similar to Figure 7. However, this 

can be seen only if the proxy is working in the transparent mode. 

 

Figure 7: Visiting whatismyip Website (URL-2) on a Proxy Network with Default Configuration 

As you can see, once the proxy server is setup (running) in the transparent mode, the web 

servers are able to infer that the source of the traffic is somewhere behind a proxy server. In our 

example, the IP address of the proxy server is 129.173.67.98. 

We can also analyze the above scenario’s http user agent by using the Wireshark [3] protocol 

analysis tool, Figure 8. 
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Figure 8: Viewing at http User Agent on Wireshark 

 

As you can see in the Wireshark, Figure 8, the client IP address behind the proxy server 

(192.168.100.2), and also the name of the proxy server (Squid 3.1.19) can be seen in the traffic 

that is sent to the web server visited. 

However, finding the existence of a proxy server and the computers behind that is not always 

this simple. As discussed before, there are four operation (configuration) modes of proxy servers: 

(i) Transparent mode, (ii) Anonymous mode, (iii) Distorting mode, and (iv) High Anonymity 

mode.  

The aforementioned examples are all in the transparent mode. A clever user/attacker may use 

other modes of a proxy server to hide his/her identity. The anonymous and the distorting modes 
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provide some levels of anonymity, but the highest anonymity mode of a proxy server is the 4th 

one, High Anonymity mode. In this mode, not only the identity of the proxy cliets would not be 

sent to the web server(s) visited, but also the visited web server could not recognize (under 

normal conditions) that it is communicating with a proxy server. In this case the user/attacker can 

completely hide his/her identity from the web server. This mode is the most ambigious mode 

from the perspective of the server that is visited (giving the service requested). 

We configured the Squid proxy server to operate at the high anonymity mode by adding the 

following access controls to the Squid proxy configuration: 

forwarded_for off 

request_header_access Allow allow all 

request_header_access Authorization allow all 

request_header_access WWW-Authenticate allow all 

request_header_access Proxy-Authorization allow all 

request_header_access Proxy-Authenticate allow all 

request_header_access Cache-Control allow all 

request_header_access Content-Encoding allow all 

request_header_access Content-Length allow all 

request_header_access Content-Type allow all 

request_header_access Date allow all 

request_header_access Expires allow all 

request_header_access Host allow all 

request_header_access If-Modified-Since allow all 

request_header_access Last-Modified allow all 

request_header_access Location allow all 

request_header_access Pragma allow all 

request_header_access Accept allow all 
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request_header_access Accept-Charset allow all 

request_header_access Accept-Encoding allow all 

request_header_access Accept-Language allow all 

request_header_access Content-Language allow all 

request_header_access Mime-Version allow all 

request_header_access Retry-After allow all 

request_header_access Title allow all 

request_header_access Connection allow all 

request_header_access Proxy-Connection allow all 

request_header_access User-Agent allow all 

request_header_access Cookie allow all 

request_header_access All deny all 

 

Then we again generated all the six proxy datasets explained before with the new proxy server 

configurations. Figure 9 shows the HTTP user agent in the proxy high anonymity mode when 

URL-1 is contacted. As you can see, there is no information revealed about the proxy server and 

the client(s) behind it, i.e. clients using it. 

 

 

Figure 9: Hiding the Proxy Server information in the http User Agent 
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Figure 10 shows the revealed information when URL-2 is contacted. As you can see in this 

figure, again no proxy information is revealed. The IP address of the client behind the proxy 

server is also completely hidden. This is what the (web) servers worry about the most, because 

there is no obvious way to find that this traffic is coming from a proxy. 

 

Figure 10: Visiting whatismyip Website When the Proxy Server in Configured to Hide Itself 

 

In Table 1, we have summarized the information of all the 13 generated data sets. 

Table 1: Summary of the Generated Unencrypted Proxy Datasets in the NIMS Lab 

 Size (bytes) #Packets Duration 
(HH:MM) 

No Proxy 80,747,884 96484 1:33 

Proxy 

Header 

Local Cache Empty 80,616,017 100956 1:15 
Full 61,014,664 77242 1:05 

No cache 81,077,862 95305 1:02 

Remote Cache Empty 71,855,827 89135 1:07 
Full 51,100,296 62702 1:44 

No cache 69,429,793 84440 1:21 

No Header 

Local Cache Empty 80,935,673 97891 1:15 
Full 58,901,656 70714 0:52 

No cache 79,659,292 93854 1:00 

Remote Cache Empty 66,834,471 79906 1:07 
Full 51,607,605 62691 0:56 

No cache 66,265,355 79644 1:05 
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Furthermore, Squid can also serve as a proxy for HTTPS (secure HTTP) traffic. However, in 

HTTPS, because the traffic is encrypted, it is not possible to cache HTTPS traffic. In HTTPS 

traffic, the whole communication between the client and the server is encrypted. Thus, in this 

case, a proxy intercepts the traffic between the server and the client, and just changes the port 

numbers and the IP addresses. There is also no way to change the user agent by the proxy, 

because everything in an HTTPS communication is encrypted. So, web caching and HTTP user 

agent configurations do not apply for encrypted proxy traffic. 

Because Alexa does not provide a list of web sites only using HTTPS as their communication 

protocol, we created our own list of web sites, Appendix B. This list contains 176 URLs of web 

sites using HTTPS as their communication protocol. 

To generate our HTTPS (encrypted traffic) proxy datasets, we set up the use of the same 

network setup as we did for generating the HTTP (unencrypted traffic) proxy datasets. To this 

end, first of all, we run the HTTPS web requests to all the web sites (176) on the list on the direct 

network and captured the resulting traffic at the edge router. This traffic is used to investigate the 

behaviors of the normal HTTPS (encrypted HTTP) traffic in our research. Then, we repeated this 

process for the clients on the local proxy network and the remote proxy network. For generating 

the HTTPS proxy data sets, we did not need to reconfigure the Squid sever, because Squid 

cannot cache, read or change the encrypted traffic. In Table 2, we have summarized the 

information of our HTTPS (encrypted) proxy data sets. 

Table 2: Summary of the Generated Encrypted Proxy Datasets in the NIMS Lab 

 Size (bytes) #Packets Netmate Tranalyzer Duration 
No Proxy 135,702,128 153821 1278 2621 1:26 
Local Proxy Network 166,926,162 245598 6438 12896 2:17 
Remote Proxy Network 216,829,519 309518 7946 15895 2:31 
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4. STATE OF THE ART METHODS FOR DETECTING PROXY TRAFFIC 

In the literature, there are not many studies that aim to identify proxy traffic on a server that is 

outside of the proxy/firewall network [4 – 10]. Even then, the few that exist [5, 10] require some 

information about either the proxy or the client behind the proxy. In all cases, we can group the 

schemes used into two general categories:  

(i) Active measurement; and  

(ii) Passive measurement based schemes. In the rest of this section, we summarize these 

schemes and show their limitations. 

4.1. Active Measurement Based Schemes 

Under these schemes, it is assumed that the traffic generated by a regular client (without 

going through a proxy) would have different behaviour compared with the traffic relayed by a 

proxy that a client uses to forward his/her packets. Some researchers in the field have used this 

assumption by developing different schemes to detect the presence of a proxy by observing the 

inter-arrival times and payload sizes of individual packets arriving at a server, such as a web 

server. Using such schemes different researchers [6, 7, 8, 9, 10] claimed to achieve 

approximately 90% in detecting proxy traffic. 

In general these schemes employ additional packets, called “active probes”, to measure the 

inter-arrival times, or more generally the delays packets are facing on the network. So active 

probes are injected (sent) into the traffic network and their transit times are used to estimate 

(sample) the network delay, namely RTT (Round Trip time), on the path the probes follow at the 

time they are sent. The RTT of a path is calculated by summing up the actively measured delays 
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in each direction of the path. For example, ping command is the used as one of the active 

measurement schemes to calculate RTTs. 

One of the major problems of this scheme is that the client should be configured to reply to 

the active probes, i.e. measurement packets, send from the host that is analyzing the RTTs. For 

example, if a web server is analyzing the traffic, then the server will send the ICMP (Internet 

Control Message Protocol) Ping packets, or any “active probe” scheme implemented. However, 

such a scheme would only work if the client replies to these probing requests. Another challenge 

of these schemes is that most of the times routers handle ICMP packets or active known probing 

packets in their slow path (leading to overestimation of RTT), or they simply discard them. 

Furthermore, most of the proxy servers with default configurations discard such ICMP probing 

packets as well. In summary, such schemes are irrelevant for the type of analysis we are doing in 

this research, because we require we do the analysis of the traffic outside of the proxy/firewall 

and we do not have access or a priori information either on the proxy or on the client using the 

proxy. 

4.2. Passive Measurement Based Schemes 

These schemes [4, 5] also make use of the assumption regarding the delays experienced and 

using them to identify proxies, but some passive schemes also enhance passive delay 

measurements with other information such as operating system or web browser information, 

again passive measured or fingerprinted. Passive schemes do not introduce additional packets, 

i.e. active probe packets, onto the network. Instead, they make use of the existing information in 

the traffic captures or other log files. We summarized the well-known passive measurement 

techniques below. 
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4.2.1. OWD – One Way Delay 

This technique measures one-way delay by noting the time it takes an arbitrary packet to 

transit between two precisely synchronized measurement points. The major limitation of this 

technique is that the OWD needs to be set up in several measurement points along the path, and 

also the time between these measurement points need to be synchronized. This does not meet our 

requirement that is we only have access to the servers, where the analysis is made, but not the 

other nodes on the path (network). 

4.2.2. Single Measuring Point 

In this case, the RTT is calculated from the time between a request packet being seen heading 

towards a distant server, and a matching reply packet coming back from the same server. 

Request/response packet-pairs are matched based on well-known fields in the packet header or 

payload (e.g. sequence numbers in TCP or ICMP echo packets). One of the major limitations of 

this approach is that it requires measurements on the client machine. Thus, this scheme works 

when we are at the position of a client machine and want to calculate the RTT to the server, but 

not when we are at the position of the web server and want to calculate the RTT to the client. 

Therefore, it does not meet our requirement. 

4.2.3. SPP – Synthetic Packet Pairs 

This technique, SPP, estimates the RTT between two measurement points along a network 

path. Traffic is observed at both measurement points, and the RTT between the two measurement 

points is estimated from pairs of packets seen travelling in each direction. Again, the main 

limitation of this technique is that it requires traffic traces from both of the server and the client 

sides. Therefore, this does not meet our requirement either. 
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4.2.4. TTL – Time To Live  

This technique aims to infer the presence of a proxy (in the form of a network address 

translation device – NAT) based on the TTL values of the packets sent by clients (IP addresses) 

and captured on the server. It is assumed that if the TTL is ttlinit −1, the sending host is directly 

connected to the Internet (as the monitoring point is one hop away from the device on which the 

traffic is monitored). If the TTL is ttlinit −2 then there is a routing device such as a NAT or a 

proxy in the users’ premises. Indeed, this assumes that the number of hops between the machine 

that the traffic is captured and the machine where the analysis is made is known. Only then the 

TTL values can be interpreted to detect a proxy. Moreover, one of the major limitations of this 

technique is that a proxy can reset the TTL value of the packets and sets its own TTL value. So, 

this technique will be irrelevant under such conditions. 

4.2.5. TTL and OS fingerprinting 

Some researchers extended the passive measurements into the HTTP user agent strings (when 

the information is available) to observe the OS types and their versions as well as browser 

information (type and version). In this case, the assumption is that it is possible to detect a proxy 

more accurately based on the OS and/or browser fingerprint. Mostly, HTTP user agent string is 

used to do the fingerprinting of OSs and/or web browsers. Nevertheless, this technique has 

limitations, too. Similar to the previous techniques, if a proxy is left by its default TTL 

configuration, then this system cannot infer the presence of a Proxy device. If all the hosts 

behind a Proxy network use the same type of OS and/or browser, this technique cannot detect the 

proxy traffic. Moreover, any host that has more than one OS and/or browser installed would be 

considered a proxy under this scheme. Last but not the least, this technique will not be any 
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different than the previous techniques when the traffic is encrypted, because the HTTP user 

agent string will be opaque in encrypted traffic. 

5. Machine Learning Based Approach 

Given the limitations of the state of the art techniques discussed above, in this research, we 

propose a machine learning based approach to identify high level behaviour of proxy machines 

in a given network traffic trace. To this end, we have employed two classification based learning 

techniques to evaluate on our data sets. These are C4.5 decision tree classifier and the Naïve 

Bayes classifier. 

Classification is a supervised learning technique, where the aim is to learn a mapping from the 

input space to the output space whose correct values (labels) are provided by a supervisor 

(ground truth, in other words real labels). Thus, both of the learning techniques employed in this 

work require a training phase to learn the patterns and/or mappings in the input data. Then the 

learned models are evaluated on unseen test data. The following summarizes the C4.5 Decision 

Tree and Naïve Bayes algorithms. 

5.1. Decision Tree Algorithm 

C4.5 is a decision tree based classification algorithm developed by Ross Quinlan that is an 

extension of the basic ID3 algorithm [11]. C4.5 is designed to address the following issues that 

are not performed in ID3 such as choosing the appropriate attribute (based on information gain), 

trying to reduce error pruning, and handling varieties of attributes types (continuous, number, 

string). It should be noted here that we use the words “attribute” and “feature” interchangeably in 

the rest of this report. 
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A decision tree is a hierarchical data structure for implementing a divide-and-conquer 

strategy. C4.5 is an efficient non-parametric method that can be used both for classification and 

regression. In non-parametric models, C4.5 constructs decision trees from a set of training data 

applying the concept of information entropy. The training data is a set, S, such that each input of 

the set is an instance of already classified samples. Each sample in the set is a vector where each 

input in the vector represents an attribute or feature of the sample. The training data is added to a 

vector where each input in the vector represents the class that each sample belongs to. C4.5 can 

split the data into smaller subsets using the fact that each attribute of the data can be used to 

make a decision. Therefore, the attribute with the highest information gain is used to make the 

decision of the split. As a result, the input space is divided into local regions defined by a 

distance metric. In a decision tree, the local region is identified in a sequence of recursive splits 

in small number of steps. A decision tree is composed of internal decision nodes and terminal 

leaves. Each node, m, implements a test function fm(x) with discrete outcomes labeling the 

branches. This process starts at the root and is repeated until a leaf node is hit. The value of a leaf 

constitutes the output. In the case of a decision tree for classification, the goodness of a split is 

quantified by an impurity measure. A split is pure if for all branches, for all instances choosing a 

branch belongs to the same class after the split. One possible function to measure impurity is 

entropy, Eq. (1) [12]. 

 

mI = −
m

ip
j=1

n

∑ log2 m

ip       (1) 

If the split is not pure, then the instances should be split to decrease impurity, and there are 

multiple possible attributes on which a split can be done. Indeed, this is locally optimal; hence 

there is no guarantee of finding the smallest decision tree. In this case, the total impurity after the 
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split can be measured by Eq. (2). In other words, when a tree is constructed, at each step the split 

that results in the largest decrease in impurity is chosen. This is the difference between the 

impurity of data reaching node m, Eq. (1), and the total entropy of data reaching its branches 

after the split, Eq. (2). Figure 11: Construction of a classification tree [12] presents the construction 

of a classification tree. A more detailed explanation of C4.5 algorithm can be found in [12]. 

 

m
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Figure 11: Construction of a classification tree [12] 

5.2. Naïve Bayes Algorithm 

A Naïve Bayes classifier is a simple probabilistic classifier based on applying Bayes' theorem 

(from Bayesian statistics) with strong (naive) independence assumptions. In simple terms, a 
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naive Bayes classifier assumes that the presence (or absence) of a particular feature of a class is 

unrelated to the presence (or absence) of any other feature. Depending on the precise nature of 

the probability model, Naïve Bayes classifiers can be trained efficiently in a supervised learning 

approach. In many practical applications, parameter estimation for Naïve Bayes models uses the 

method of maximum likelihood [13]. A simple Naïve Bayes probabilistic model can be 

expressed as Eq. (3) in the following: 

𝑃(𝐶|𝐹1, 𝐹2, … , 𝐹𝑛) =  1
𝑍
𝑃(𝐶)∏ 𝑃(𝐹𝑖|𝐶),                                       𝑛

𝑖=1 (3) 

where P(C|F1, F2, …, Fn) is the probabilistic model over dependent class variable C with a small 

number of outcomes or classes, conditional on several feature variables F1 through Fn; Z is a 

scaling factor dependent only on F1, F2, …, Fn, i.e., a constant if the value of the feature variables 

are known. A Naïve Bayes classifier combines the probabilistic model with a decision rule that 

aims to maximize a posterior, thus the classifier can be defined using Eq. (4) as follows: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑓1, 𝑓2, … . , 𝑓𝑛) =  𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑃(𝐶 = 𝑐)∏ 𝑃(𝐹𝑖 = 𝑓𝑖|𝐶 = 𝑐)𝑛
𝑖=1     (4) 

An advantage of the Naïve Bayes classifier is that it only requires a small amount of training data 

to estimate the parameters (means and variances of the variables) necessary for classification. 

Given that independent variables are assumed, only the variances of the variables for each class 

need to be determined and not the entire covariance matrix. Time complexity for learning the 

Naïve Bayes classifier is O(Np), where N is the number of training examples and p is the number 

of features. Space complexity for the Naïve Bayes algorithm is O(pqr), where p is the number of 

features, q is values for each features, and r is alternative values for the class. Naïve Bayes is the 

simplest form of a Bayesian network. All attributes are independent given the value of class 

variables. This is called conditional independence. The conditional independence assumption is 
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not often true in the real world problems. A more detailed explanation of Naïve Bayes algorithm 

can be found in [12]. 

6. EVALUATIONS 

The evaluations conducted in this work have seven components. These are: (i) Flow 

generation and feature extraction; (ii) Classification of flows into “Proxy” vs “No-Proxy”; (iii) 

Classification of Proxy flows into “Encrypted” vs “Unencrypted”; (iv) Classification of Proxy 

flows into “Local” vs “Remote”; (v) Classification of Encrypted Proxy flows into “Header” vs 

“No-Header”; (vi) Classification of Encrypted Proxy flows into “Cache” vs “No-Cache”; and 

(vii) Graphical user interface for visualizing the high level application behavior. Figure 12 gives 

an overview of the prototype system developed and used in these evaluations. 

In our prototype, all network traffic data sets are first converted to traffic flows using two 

open source tools, namely NetMate [14] and Tranalyzer [15]. In doing so, we aim to understand 

if the different features of these flow tools will effect the performance of the classifiers or not. 

Flows are bidirectional and the first packet seen by the tool determines the forward direction. We 

consider only UDP and TCP flows. Moreover, UDP flows are terminated by a flow timeout, 

whereas TCP flows are terminated upon proper connection teardown or by a flow timeout, 

whichever occurs first. The flow timeout value employed in this work is 600 seconds as 

recommended by the IETF [16]. Also, in this work, all the “broken” flows are filtered out so that 

what are left are only the flows that have at least one packet in each direction.  

Next, the statistical features generated by the flow tools shown in Table 3 are extracted from 

these traffic flows. It should be noted here that detailed explanation of these features can be 

found on the web sites of NetMate [14] and Tranalyzer [15] tools, respectively. Once these 
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features are extracted, then they are used to represent the network flows to the machine learning 

algorithms employed in this work. 

 

 

Figure 12: An Overview of Our Prototype System 
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Table 3: Features Employed in This Research 

All Netmate 
Features 

total_fpackets, total_fvolume, total_bpackets, total_bvolume, min_fpktl, mean_fpktl, 
max_fpktl, std_fpktl, min_bpktl, mean_bpktl, max_bpktl, std_bpktl, min_fiat, mean_fiat, 
max_fiat, std_fiat, min_biat, mean_biat, max_biat, std_biat, duration, min_active, 
mean_active, max_active, std_active, min_idle, mean_idle, max_idle, std_idle, 
sflow_fpackets, sflow_fbytes, sflow_bpackets, sflow_bbytes, fpsh_cnt, bpsh_cnt, 
furg_cnt, burg_cnt, total_fhlen, total_bhlen 

All 
Tranalyzer 
Features 

Direction, Duration, numPktsSnt, numPktsRcvd, numBytesSnt, numBytesRcvd, 
minPktSz, maxPktSz, avePktSize, pktps, bytps, pktAsm, bytAsm, ipMindIPID, 
ipMaxdIPID, ipMinTTL, ipMaxTTL, ipTTLChg, ipTOS, ipFlags, ipOptCnt, 
ipOptCpCl_Num, tcpPSeqCnt, tcpSeqSntBytes, tcpSeqFaultCnt, tcpPAckCnt, 
tcpFlwLssAckRcvdBytes, tcpAckFaultCnt, tcpInitWinSz, tcpAveWinSz, tcpMinWinSz, 
tcpMaxWinSz, tcpWinSzDwnCnt, tcpWinSzUpCnt, tcpWinSzChgDirCnt, tcpAggrFlags, 
tcpAggrAnomaly, tcpOptPktCnt, tcpOptCnt, tcpAggrOptions, tcpMSS, tcpWS, tcpS-
SA/SA-ATrip, tcpRTTSseqAA, tcpRTTAckTripMin, tcpRTTAckTripMax, 
tcpRTTAckTripAve 

 

To this end, our 13 proxy traffic traces (discussed earlier) are employed for evaluation 

purposes. Brief statistics on these traffic traces are given in Table 1, Table 2, and Table 4  

Once the traffic traces are represented using statistical features based on flows, the next step is 

to randomly sample (using uniform probability) data sets from the different categories of flows. 

In this work, the C4.5 and the Naïve Bayes classification algorithms are used to classify the 

Proxy traffic traces into Proxy vs No-Proxy, Encrypted vs Unencrypted, Local vs Remote, 

Header vs No-Header, and Cache vs No-Cache. It should be noted here that the open source tool 

WEKA [17] is employed for running the classifiers as well as for performing the random 

sampling using uniform probability distribution function. 

In summary, any network traffic trace file that will be analyzed using this system, first needs 

to be converted into flows using a tool such as Netmate and the aforementioned features needs to 

be extracted. Then the prototype system classifies these flows, using a trained classification 

model, to classify Proxy traffic vs No-Proxy traffic. For this work, we employ the C4.5 and 

Naïve Bayes learning techniques to create such classification models. Then the output of the 
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aforementioned process becomes the input for the Encrypted Proxy vs Unencrypted Proxy 

classifier for identifying high level behavior of the proxy traffic. After this, all flows identified as 

proxy, encrypted and unencrypted, run through the Local Proxy vs Remote Proxy classifiers. 

This classifier detects whether the machines behind the proxy device are located in the same 

network as the proxy device is located, or located in a separate network. Whether the 

unencrypted proxy traffic is classified as local or remote, it runs through two other classifiers 

which are Cache vs No-Cache classifier and Header vs No-Header Classifier (this classifier 

detects if there is any fingerprint of the proxy device in the header of the http request or not). It 

should be noted here that all of this analysis (classification) is performed on a machine that is on 

a different network than the proxy and its clients. 

7. EXPERIMENTS AND RESULTS 

In this work, the learning models of the C4.5 and Naïve Bayes algorithms are trained and 

tested using WEKA [17]. As discussed earlier, aforementioned traffic data sets are used during 

these evaluations. The NIMS Lab proxy traffic data sets are available for testing and 

benchmarking purposes in the attached CD.  

In traffic classification, two metrics are typically used in order to quantify the performance of 

the classifier: Detection Rate (DR) and False Positive Rate (FP). In this case, DR reflects the 

number of in-class (the class that we are interested in) flows correctly classified and is calculated 

using the DR = TP/(TP+FN); whereas the FP rate reflects the number of out-class (anything that 

is not in-class) flows incorrectly classified as in-class using the FPR = FP/(FP+TN). Naturally, a 

high DR rate and a low FP rate are the most desirable outcomes. Moreover, False Negative, FN, 

implies that in-class traffic is classified as out-class traffic, and False Positive, FP, implies that 
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out-class traffic is classified as in-class traffic. In the following we present the results of the C4.5 

and Naïve Bayes classification algorithms on our proxy traffic data sets. 

7.1. Results of the Classification Experiments 

Given our approach discussed above, the first set of experiments we performed are training 

and testing of the C4.5 and Naïve Bayes classifiers for classifying the flows into “Proxy” vs 

“No-Proxy”, then “Encrypted Proxy” vs “Unencrypted Proxy”, then “Local Proxy” vs “Remote 

Proxy”, then “Encrypted Proxy with Header” vs “Encrypted Proxy with No-Header”, and finally, 

“Cached Encrypted Proxy” vs “No-Cached Encrypted Proxy”.  

 

Table 4 assigns a number to each of our proxy traffic datasets for ease of further referencing, 

and also represents the number of extracted flows from each datasets, using Netmate and 

Tranalyzer tools. 

To identify the proxy traffic, we considered 11 different cases, including: 

1. “NoProxy-Unencrypted” vs “Proxy-Unencrypted” 

2. “NoProxy-Encrypted” vs “Proxy-Encrypted” 

3. “NoProxy” vs “Proxy” 

4. “NoProxy” vs “Proxy-Encrypted” vs “Proxy-Unencrypted” 

5. “Proxy-Encrypted” vs “Proxy-Unencrypted” 

6. “NoProxy-Unencrypted” vs “Proxy-Unencrypted-Local” vs “Proxy-Unencrypted-

Remote” 

7. “NoProxy-Encrypted” vs “Proxy-Encrypted-Local” vs “Proxy-Encrypted-Remote” 

8. “NoProxy” vs “Proxy-Local” vs “Proxy-Remote” 
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9. “NoProxy-Unencrypted” vs “Proxy-Unencrypted-Cache” vs “Proxy-Unencrypted-

NoCache” 

10. "NoProxy-Unencrypted” vs “Proxy-Unencrypted-Header” vs “Proxy-Unencrypted-

NoHeader” 

11. “Proxy-Unencrypted-Header” vs “Proxy-Unencrypted-NoHeader” 

For each case, we did 8 separate tests including the combination of Balance/Unbalance 

datasets, Netmate/Tranalyzer features, and C4.5/Naïve Bayes classification algorithms. Below 

we present the results of the entire 88 separate proxy traffic experiments performed in the scope 

of this work.  

Table 4: The Number of Instances (flows) in our Datasets 

Dataset Number Dataset Name 
Number of 
Netmate 
Instances 

Number of 
Tranalyzer 
Instances 

1 Unencrypted-NoProxy 1127 2323 
2 Unencrypted-Remote-Cache-Header-EmptyCache 1136 2286 
3 Unencrypted-Remote-Cache-Header-FullCache 1076 2166 

4 Unencrypted-Remote-Cache-NoHeader-
EmptyCache 1116 2247 

5 Unencrypted-Remote-Cache-NoHeader-FullCache 1071 2158 
6 Unencrypted-Remote-NoCache-Header 1111 2238 
7 Unencrypted-Remote-NoCache-NoHeader 1110 2240 
8 Unencrypted-Local-Cache-Header-EmptyCache 1251 2519 
9 Unencrypted-Local-Cache-Header-FullCache 1134 2282 

10 Unencrypted-Local-Cache-NoHeader-
EmptyCache 1281 2578 

11 Unencrypted-Local-Cache-NoHeader-FullCache 1143 2300 
12 Unencrypted-Local-NoCache-Header 1252 2518 
13 Unencrypted-Local-NoCache-NoHeader 1271 2556 
14 Encrypted-NoProxy 1278 2556 
15 Encrypted-Remote 7946 15894 
16 Encrypted-Local 6438 12877 
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7.1.1.  “NoProxy-Unencrypted” vs “Proxy-Unencrypted”: Binary Classification 

In this case, our aim is to differentiate unencrypted traffic without any proxies from unencrypted 

traffic with proxies. It turns out this is the most challenging case we experimented with, 90% 

detection with almost 8% false alarm. 

Table 5: Dataset Numbers for “NoProxy-Unencrypted” vs “Proxy-Unencrypted” Classification 

Class Dataset Number 
NoProxy-Unencrypted 1 
Proxy-Unencrypted 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 

 

 

Table 6: Results of “NoProxy-Unencrypted” vs “Proxy-Unencrypted” Classification 

Features Data set Number of Instances Results 

Netmate 

Unbalance NoProxy-Unencrypted: 1127 
Proxy-Unencrypted: 13952 

C4.5 DR FPR 
NoProxy-Unencrypted 74.4 1.4 

Proxy-Unencrypted 98.6 25.6 
 

Naïve Bayes DR FPR 
NoProxy-Unencrypted 74.9 23.9 

Proxy-Unencrypted 76.1 25.1 
 

Balance NoProxy-Unencrypted: 1127 
Proxy-Unencrypted: 1127 

C4.5 DR FPR 
NoProxy-Unencrypted 92.5 10.8 

Proxy-Unencrypted 89.2 7.5 
 

Naïve Bayes DR FPR 
NoProxy-Unencrypted 88.6 33.5 

Proxy-Unencrypted 66.5 11.4 
 

Tranalyzer 

Unbalance NoProxy-Unencrypted: 2323 
Proxy-Unencrypted: 28088 

C4.5 DR FPR 
NoProxy-Unencrypted 73.1 0.7 

Proxy-Unencrypted 99.3 26.9 
 

Naïve Bayes DR FPR 
NoProxy-Unencrypted 33.8 10.6 

Proxy-Unencrypted 89.4 66.2 
 

Balance NoProxy-Unencrypted: 2323 
Proxy-Unencrypted: 2323 

C4.5 DR FPR 
NoProxy-Unencrypted 89.6 10 

Proxy-Unencrypted 90 10.4 
 

Naïve Bayes DR FPR 
NoProxy-Unencrypted 27.2 8.5 

Proxy-Unencrypted 91.5 72.8 
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7.1.2.  “NoProxy-Encrypted” vs “Proxy-Encrypted”: Binary Classification 

In this case, our aim is to differentiate encrypted traffic without any proxies from encrypted 

traffic with proxies. It turns out that this we can do this with very high performance 96% 

detection and 2% false alarm.  

Table 7: Dataset Numbers for “NoProxy-Encrypted” vs “Proxy-Encrypted” Classification 

Class Dataset Number 
NoProxy-Encrypted 14 
Proxy-Encrypted 15, 16 

 

 

Table 8: Results of “NoProxy-Encrypted” vs “Proxy-Encrypted” Classification 

Features Data set Number of Instances Results 

Netmate 

Unbalance NoProxy-Encrypted: 1278 
Proxy-Encrypted: 14384 

C4.5 DR FPR 
NoProxy-Encrypted 94 0.3 

Proxy-Encrypted 99.7 6 
 

Naïve Bayes DR FPR 
NoProxy-Encrypted 13.2 2.5 

Proxy-Encrypted 97.5 86.8 
 

Balance NoProxy-Encrypted: 1278 
Proxy-Encrypted: 1278 

C4.5 DR FPR 
NoProxy-Encrypted 97.7 3.8 

Proxy-Encrypted 96.2 2.3 
 

Naïve Bayes DR FPR 
NoProxy-Encrypted 16 2 

Proxy-Encrypted 98 84 
 

Tranalyzer 

Unbalance NoProxy-Encrypted: 2556 
Proxy-Encrypted: 28771 

C4.5 DR FPR 
NoProxy-Encrypted 91.6 0.4 

Proxy-Encrypted 99.6 8.4 
 

Naïve Bayes DR FPR 
NoProxy-Encrypted 17.2 3.7 

Proxy-Encrypted 96.3 82.8 
 

Balance NoProxy-Encrypted: 2556 
Proxy-Encrypted: 2556 

C4.5 DR FPR 
NoProxy-Encrypted 95.9 3.8 

Proxy-Encrypted 96.2 4.1 
 

Naïve Bayes DR FPR 
NoProxy-Encrypted 19.8 4.8 

Proxy-Encrypted 95.2 80.2 
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7.1.3.  “NoProxy” vs “Proxy”: Binary Classification 

In this case, our aim is to differentiate traffic without any proxies from traffic with proxies. This 

is the most complex case because it includes both the encrypted as well as the unencrypted 

traffic. We had assumed this would be the most challenging case, but our performance is pretty 

good (given the traffic is not filtered at all and includes everything) with 92% detection and 6% 

false alarm. 

Table 9: Dataset Numbers for “NoProxy” vs “Proxy” Classification 

Class Dataset Number 
NoProxy 1, 14 
Proxy 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16 

 

 

Table 10: Results of “NoProxy” vs “Proxy” Classification 

Features Data set Number of Instances Results 

Netmate 

Unbalance NoProxy: 2405 
Proxy: 28336 

C4.5 DR FPR 
NoProxy 82.5 1 

Proxy 99 17.5 
 

Naïve Bayes DR FPR 
NoProxy 17.3 4.7 

Proxy 95.3 82.7 
 

Balance NoProxy: 2405 
Proxy: 2405 

C4.5 DR FPR 
NoProxy 94.1 7.9 

Proxy 92.1 5.9 
 

Naïve Bayes DR FPR 
NoProxy 17.9 4.6 

Proxy 95.4 82.1 
 

Tranalyzer 

Unbalance NoProxy: 4879 
Proxy: 56859 

C4.5 DR FPR 
NoProxy 80.6 0.7 

Proxy 99.3 19.4 
 

Naïve Bayes DR FPR 
NoProxy 34 6.3 

Proxy 93.7 66 
 

Balance NoProxy: 4879 
Proxy: 4879 

C4.5 DR FPR 
NoProxy 93.4 6.7 

Proxy 93.3 6.6 
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Naïve Bayes DR FPR 

NoProxy 36.5 7.7 
Proxy 92.3 63.5 

 

 

7.1.4.  “NoProxy” vs “Proxy-Encrypted” vs “Proxy-Unencrypted”: 3 Classes Classification 

In this case, our aim is to differentiate traffic without any proxies from unencrypted proxy traffic 

as well as encrypted proxy traffic. Our performance is very good with over 90% detection and 

less than 5% false alarm.  

Table 11: Dataset Numbers for “NoProxy” vs “Proxy-Encrypted” vs “Proxy-Unencrypted” Classification 

Class Dataset Number 
NoProxy 1, 14 
Proxy-Encrypted 15, 16 
Proxy-Unencrypted 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 

 

Table 12: Results of “NoProxy” vs “Proxy-Encrypted” vs “Proxy-Unencrypted” Classification 

Features Data set Number of Instances Results 

Netmate 

Unbalance 
NoProxy: 2405 

Proxy-Encrypted: 14384 
Proxy-Unencrypted: 13952 

C4.5 DR FPR 
NoProxy 82.7 0.9 

Proxy-Encrypted 99.4 0.8 
Proxy-Unencrypted 98.3 2 

 
Naïve Bayes DR FPR 

NoProxy 16.7 4.3 
Proxy-Encrypted 96.1 28.4 

Proxy-Unencrypted 72.8 2.9 
 

Balance 
NoProxy: 2405 

Proxy-Encrypted: 2405 
Proxy-Unencrypted: 2405 

C4.5 DR FPR 
NoProxy 90.5 4.3 

Proxy-Encrypted 97.3 1.6 
Proxy-Unencrypted 93.5 3.5 

 
Naïve Bayes DR FPR 

NoProxy 17.2 4.4 
Proxy-Encrypted 95.6 43.6 

Proxy-Unencrypted 74.3 8.5 
 

Tranalyzer Unbalance 
NoProxy: 4879 

Proxy-Encrypted: 28771 
Proxy-Unencrypted: 280888 

C4.5 DR FPR 
NoProxy 82.5 0.7 

Proxy-Encrypted 99.4 0.9 
Proxy-Unencrypted 98.8 2 

 



42 
 

Naïve Bayes DR FPR 
NoProxy 11.8 3 

Proxy-Encrypted 96.6 43.8 
Proxy-Unencrypted 57.6 3.1 

 

Balance 
NoProxy: 4879 

Proxy-Encrypted: 4879 
Proxy-Unencrypted: 4879 

C4.5 DR FPR 
NoProxy 90.3 3.8 

Proxy-Encrypted 97.3 1.9 
Proxy-Unencrypted 94 3.4 

 
Naïve Bayes DR FPR 

NoProxy 13 3.3 
Proxy-Encrypted 96.5 57.7 

Proxy-Unencrypted 55.5 6.5 
 

 

7.1.5.  “Proxy-Encrypted” vs “Proxy-Unencrypted”: Binary Classification 

In this case, our aim is to differentiate encrypted proxy traffic from unencrypted proxy traffic. 

Our performance is very high in this case with over 99% detection and less than 0.5% false 

alarm. 

Table 13: Dataset Numbers for “Proxy-Encrypted” vs “Proxy-Unencrypted” Classification 

Class Dataset Number 
Proxy-Encrypted 15, 16 
Proxy-Unencrypted 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 

 

Table 14: Results of “Proxy-Encrypted” vs “Proxy-Unencrypted” Classification 

Features Data set Number of Instances Results 

Netmate 

Unbalance Proxy-Encrypted: 14384 
Proxy-Unencrypted: 13952 

C4.5 DR FPR 
Proxy-Encrypted 99.8 0.2 

Proxy-Unencrypted 99.8 0.2 
 

Naïve Bayes DR FPR 
Proxy-Encrypted 96.4 21.6 

Proxy-Unencrypted 78.4 3.6 
 

Balance Proxy-Encrypted: 13952 
Proxy-Unencrypted: 13952 

C4.5 DR FPR 
Proxy-Encrypted 99.8 0.2 

Proxy-Unencrypted 99.8 0.2 
 

Naïve Bayes DR FPR 
Proxy-Encrypted 96.5 21.6 

Proxy-Unencrypted 78.4 3.5 
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Tranalyzer 

Unbalance Proxy-Encrypted: 28771 
Proxy-Unencrypted: 28088 

C4.5 DR FPR 
Proxy-Encrypted 99.7 0.3 

Proxy-Unencrypted 99.7 0.3 
 

Naïve Bayes DR FPR 
Proxy-Encrypted 9701 38.7 

Proxy-Unencrypted 61.3 2.9 
 

Balance Proxy-Encrypted: 28088 
Proxy-Unencrypted: 28088 

C4.5 DR FPR 
Proxy-Encrypted 99.7 0.3 

Proxy-Unencrypted 99.7 0.3 
 

Naïve Bayes DR FPR 
Proxy-Encrypted 97.1 38.7 

Proxy-Unencrypted 61.3 2.9 
 

 

7.1.6.  “NoProxy-Unencrypted” vs “Proxy-Unencrypted-Local” vs “Proxy-Unencrypted-

Remote”: 3 Classes Classification 

In this case, our aim is to differentiate unencrypted traffic without any proxies from unencrypted 

local proxy traffic as well as unencrypted remote proxy traffic. Here the words “local” and 

“remote” are used with respect to the client. Our results show that this is basically a very difficult 

problem. The false alarm rates are very high when we try to make a prediction about the location 

(with respect to the client) of the proxy. 

Table 15: Dataset Numbers for “NoProxy-Unencrypted” vs “Proxy-Unencrypted-Local” vs “Proxy-Unencrypted-
Remote” Classification 

Class Dataset Number 
NoProxy-Unencrypted 1 
Proxy-Unencrypted-Local 8, 9, 10, 11, 12, 13 
Proxy-Unencrypted-Remote 2, 3, 4, 5, 6, 7 

 

Table 16: Results of “NoProxy-Unencrypted” vs “Proxy-Unencrypted-Local” vs “Proxy-Unencrypted-Remote” 
Classification 

Features Data set Number of Instances Results 

Netmate Unbalance 

NoProxy-Unencrypted: 1127 
Proxy-Unencrypted-local: 7332 

Proxy-Unencrypted-Remote: 
6620 

C4.5 DR FPR 
NoProxy-Unencrypted 72.8 1.9 

Proxy-Unencrypted-Local 69.6 26.2 
Proxy-Unencrypted-Remote 69.7 26.5 
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Naïve Bayes DR FPR 

NoProxy-Unencrypted 41.9 12.7 
Proxy-Unencrypted-Local 5.6 4.6 

Proxy-Unencrypted-Remote 82.6 78 
 

Balance 

NoProxy-Unencrypted: 1127 
Proxy-Unencrypted-local: 1127 

Proxy-Unencrypted-Remote: 
1127 

C4.5 DR FPR 
NoProxy-Unencrypted 88 7.1 

Proxy-Unencrypted-Local 62.3 16.5 
Proxy-Unencrypted-Remote 65 18.7 

 
Naïve Bayes DR FPR 

NoProxy-Unencrypted 43 14.7 
Proxy-Unencrypted-Local 5.8 3 

Proxy-Unencrypted-Remote 80.7 67.6 
 

Tranalyzer 

Unbalance 

NoProxy-Unencrypted: 2323 
Proxy-Unencrypted-local: 14753 

Proxy-Unencrypted-Remote: 
13335 

C4.5 DR FPR 
NoProxy-Unencrypted 74.9 1.4 

Proxy-Unencrypted-Local 62.6 32.6 
Proxy-Unencrypted-Remote 63.3 32.3 

 
Naïve Bayes DR FPR 

NoProxy-Unencrypted 26.6 7.2 
Proxy-Unencrypted-Local 3.9 3.5 

Proxy-Unencrypted-Remote 89.2 86.4 
 

Balance 

NoProxy-Unencrypted: 2323 
Proxy-Unencrypted-local: 2323 

Proxy-Unencrypted-Remote: 
2323 

C4.5 DR FPR 
NoProxy-Unencrypted 88.4 7.4 

Proxy-Unencrypted-Local 51 19.1 
Proxy-Unencrypted-Remote 61.9 22.8 

 
Naïve Bayes DR FPR 

NoProxy-Unencrypted 23.5 8.6 
Proxy-Unencrypted-Local 70.3 65.3 

Proxy-Unencrypted-Remote 20.6 18.8 
 

 

7.1.7.  “NoProxy-Encrypted” vs “Proxy-Encrypted-Local” vs “Proxy-Encrypted-Remote”: 3 
Classes Classification 

In this case, our aim is to differentiate encrypted traffic without any proxies from encrypted local 

proxy traffic as well as encrypted remote proxy traffic. Again, the words “local” and “remote” 

are used with respect to the client. Our results show that we can do this better than the previous 

case. We can achieve over 85% detection with less than 8% false alarm rates.  
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Table 17: Dataset Numbers for “NoProxy-Encrypted” vs “Proxy-Encrypted-Local” vs “Proxy-Encrypted-Remote” 
Classification 

Class Dataset Number 
NoProxy-Encrypted 14 
Proxy-Encrypted-Local 16 
Proxy-Encrypted-Remote 15 

 

Table 18: Results of “NoProxy-Encrypted” vs “Proxy-Encrypted-Local” vs “Proxy-Encrypted-Remote” Classification 

Features Data set Number of Instances Results 

Netmate 

Unbalance 
NoProxy-Encrypted: 1278 

Proxy-Encrypted-Local: 6438 
Proxy-Encrypted-Remote: 7946 

C4.5 DR FPR 
NoProxy-Encrypted 93.9 0.4 

Proxy-Encrypted-Local 91.3 6.1 
Proxy-Encrypted-Remote 93.4 7.1 

 
Naïve Bayes DR FPR 

NoProxy-Encrypted 12.3 2.3 
Proxy-Encrypted-Local 59.8 48.3 

Proxy-Encrypted-Remote 50.6 36.9 
 

Balance 
NoProxy-Encrypted: 1278 

Proxy-Encrypted-Local: 1278 
Proxy-Encrypted-Remote: 1278 

C4.5 DR FPR 
NoProxy-Encrypted 95.4 2.2 

Proxy-Encrypted-Local 85.1 8.3 
Proxy-Encrypted-Remote 84.7 7 

 
Naïve Bayes DR FPR 

NoProxy-Encrypted 14.9 2.1 
Proxy-Encrypted-Local 73.6 67 

Proxy-Encrypted-Remote 37.1 18.1 
 

Tranalyzer 

Unbalance 
NoProxy-Encrypted: 2556 

Proxy-Encrypted-Local: 12877 
Proxy-Encrypted-Remote: 15894 

C4.5 DR FPR 
NoProxy-Encrypted 93.3 0.5 

Proxy-Encrypted-Local 91.7 5.1 
Proxy-Encrypted-Remote 94.3 6.9 

 
Naïve Bayes DR FPR 

NoProxy-Encrypted 15.8 3.4 
Proxy-Encrypted-Local 85.2 83.9 

Proxy-Encrypted-Remote 11.4 10.8 
 

Balance 
NoProxy-Encrypted: 2556 

Proxy-Encrypted-Local: 2556 
Proxy-Encrypted-Remote: 2556 

C4.5 DR FPR 
NoProxy-Encrypted 94.9 2.4 

Proxy-Encrypted-Local 86.9 5.7 
Proxy-Encrypted-Remote 90.3 5.8 

 
Naïve Bayes DR FPR 

NoProxy-Encrypted 16.9 3.6 
Proxy-Encrypted-Local 85.2 80.7 

Proxy-Encrypted-Remote 12 8.7 
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7.1.8.  “NoProxy” vs “Proxy-Local” vs “Proxy-Remote”: 3 Classes Classification 

In this case, our aim is to differentiate traffic without any proxies from local proxy traffic as well 

as remote proxy traffic. In this case, we do not take into account whether they are encrypted or 

not. Again, as soon as unencrypted proxy and non-proxy traffic is mixed, false alarm rates 

increase over 10%. 

Table 19: Dataset Numbers for “NoProxy” vs “Proxy-Local” vs “Proxy-Remote” Classification 

Class Dataset Number 
NoProxy 1, 14 
Proxy-Local 8, 9, 10, 11, 12, 13, 16 
Proxy-Remote 2, 3, 4, 5, 6, 7, 15 

 

Table 20: Results of “NoProxy” vs “Proxy-Local” vs “Proxy-Remote” Classification 

Features Data set Number of Instances Results 

Netmate 

Unbalance 
NoProxy: 2405 

Proxy-Local: 13770 
Proxy-Remote: 14566 

C4.5 DR FPR 
NoProxy 80.4 1.4 

Proxy-Local 79.6 16.3 
Proxy-Remote 81.7 17.3 

 
Naïve Bayes DR FPR 

NoProxy 16.2 3.6 
Proxy-Local 5.2 5.0 

Proxy-Remote 91.1 89.5 
 

Balance 
NoProxy: 2405 

Proxy-Local: 2405 
Proxy-Remote: 2405 

C4.5 DR FPR 
NoProxy 89.8 5.5 

Proxy-Local 72.8 13.3 
Proxy-Remote 73.8 13.1 

 
Naïve Bayes DR FPR 

NoProxy 16.8 4.2 
Proxy-Local 7.5 3.9 

Proxy-Remote 90.9 84.3 
 

Tranalyzer Unbalance 
NoProxy: 4879 

Proxy-Local: 27630 
Proxy-Remote: 29229 

C4.5 DR FPR 
NoProxy 81.9 1 

Proxy-Local 75.2 17.9 
Proxy-Remote 80 21.2 

 
Naïve Bayes DR FPR 

NoProxy 31.8 5.6 
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Proxy-Local 5.3 4.2 
Proxy-Remote 90.4 85.1 

 

Balance 
NoProxy: 4879 

Proxy-Local: 4879 
Proxy-Remote: 4879 

C4.5 DR FPR 
NoProxy 90.6 5.5 

Proxy-Local 69.9 14.9 
Proxy-Remote 70.6 14.1 

 
Naïve Bayes DR FPR 

NoProxy 21.3 6.6 
Proxy-Local 5.5 4.4 

Proxy-Remote 90.3 80.5 
 

 

7.1.9.  “NoProxy-Unencrypted” vs “Proxy-Unencrypted-Cache” vs “Proxy-Unencrypted-
NoCache”: 3 Classes Classification 

In this case, our aim is to differentiate unencrypted traffic without any proxies from cache-proxy 

unencrypted traffic as well as no-cache-proxy unencrypted traffic. Again, as soon as unencrypted 

proxy and non-proxy traffic is mixed, it becomes vey challenging to predict whether the proxy 

works with cache or not. 

Table 21: Dataset Numbers for “NoProxy-Unencrypted” vs “Proxy-Unencrypted-Cache” vs “Proxy-Unencrypted-
NoCache” Classification 

Class Dataset Number 
NoProxy-Unencrypted 1 
Proxy-Unencrypted-Cache 2, 3, 4, 5, 8, 9, 10, 11 
Proxy-Unencrypted-NoCache 6, 7, 12, 13 

 

Table 22: Results of “NoProxy-Unencrypted” vs “Proxy-Unencrypted-Cache” vs “Proxy-Unencrypted-NoCache” 
Classification 

Features Data set Number of Instances Results 

Netmate 
Unbalance 

NoProxy-Unencrypted: 
1127 

Proxy-Unencrypted-
Cache: 9208 

Proxy-Unencrypted-
NoCache: 4744 

C4.5 DR FPR 
NoProxy-Unencrypted 74.8 1.9 

Proxy-Unencrypted-Cache 86.3 63.8 
Proxy-Unencrypted-NoCache 23.6 11.3 

 
Naïve Bayes DR FPR 

NoProxy-Unencrypted 69.2 20.6 
Proxy-Unencrypted-Cache 66.3 59.3 

Proxy-Unencrypted-NoCache 13.8 11.4 
 

Balance NoProxy-Unencrypted: 
1127 

C4.5 DR FPR 
NoProxy-Unencrypted 88.5 7.3 
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Proxy-Unencrypted-
Cache: 1127 

Proxy-Unencrypted-
NoCache: 1127 

Proxy-Unencrypted-Cache 41.4 17.7 
Proxy-Unencrypted-NoCache 62.2 28.9 

 
Naïve Bayes DR FPR 

NoProxy-Unencrypted 36.2 11.3 
Proxy-Unencrypted-Cache 7 7.1 

Proxy-Unencrypted-NoCache 82.8 68.6 
 

Tranalyzer 

Unbalance 

NoProxy-Unencrypted: 
2323 

Proxy-Unencrypted-
Cache: 18536 

Proxy-Unencrypted-
NoCache: 9552 

C4.5 DR FPR 
NoProxy-Unencrypted 74.7 1.2 

Proxy-Unencrypted-Cache 89.9 67.4 
Proxy-Unencrypted-NoCache 20.3 8.3 

 
Naïve Bayes DR FPR 

NoProxy-Unencrypted 33.7 10.2 
Proxy-Unencrypted-Cache 61.4 55.5 

Proxy-Unencrypted-NoCache 30.8 28 
 

Balance 

NoProxy-Unencrypted: 
2323 

Proxy-Unencrypted-
Cache: 2323 

Proxy-Unencrypted-
NoCache: 2323 

C4.5 DR FPR 
NoProxy-Unencrypted 87.1 8 

Proxy-Unencrypted-Cache 50.4 23.2 
Proxy-Unencrypted-NoCache 52.7 23.7 

 
Naïve Bayes DR FPR 

NoProxy-Unencrypted 46.6 18.3 
Proxy-Unencrypted-Cache 6.7 4.7 

Proxy-Unencrypted-NoCache 77.1 61.9 
 

 

7.1.10. "NoProxy-Unencrypted” vs “Proxy-Unencrypted-Header” vs “Proxy-Unencrypted-
NoHeader”: 3 Classes Classification 

In this case, our aim is to differentiate the traffic described in the previous case using not only 

flow information but also combining it whether we observe anything similar to proxy header 

information. Here we make the assumption that if we find proxy header type information in the 

traffic we will assume that there is cache-proxy, otherwise we will assume that there is proxy 

traffic but with no cache. Actually, this assumption improves the performance we have seen in 

section 7.1.9. Now, the detection rate is above 85% and the false alarm rate is less then 8%. 
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Table 23: Dataset Numbers for "NoProxy-Unencrypted” vs “Proxy-Unencrypted-Header” vs “Proxy-Unencrypted-
NoHeader” Classification 

Class Dataset Number 
NoProxy-Unencrypted 1 
Proxy-Unencrypted-Header 2, 3, 6, 8, 9, 12 
Proxy-Unencrypted-NoHeader 4, 5, 7, 10, 11, 13 

 

Table 24: Results of "NoProxy-Unencrypted” vs “Proxy-Unencrypted-Header” vs “Proxy-Unencrypted-NoHeader” 
Classification 

Features Data set Number of Instances Results 

Netmate 

Unbalance 

NoProxy-Unencrypted: 
1127 

Proxy-Unencrypted-
Header: 6960 

Proxy-Unencrypted-
NoHeader: 6992 

C4.5 DR FPR 
NoProxy-Unencrypted 73.8 1.3 

Proxy-Unencrypted-Header 98.2 2.2 
Proxy-Unencrypted-NoHeader 96.2 4 

 
Naïve Bayes DR FPR 

NoProxy-Unencrypted 60.5 19.2 
Proxy-Unencrypted-Header 22.4 13.3 

Proxy-Unencrypted-NoHeader 65 56.1 
 

Balance 

NoProxy-Unencrypted: 
1127 

Proxy-Unencrypted-
Header: 1127 

Proxy-Unencrypted-
NoHeader: 1127 

C4.5 DR FPR 
NoProxy-Unencrypted 88.2 7.9 

Proxy-Unencrypted-Header 92.1 3.7 
Proxy-Unencrypted-NoHeader 85.5 5.5 

 
Naïve Bayes DR FPR 

NoProxy-Unencrypted 86.2 32.6 
Proxy-Unencrypted-Header 9.3 3.6 

Proxy-Unencrypted-NoHeader 62 35 
 

Tranalyzer 

Unbalance 

NoProxy-Unencrypted: 
2323 

Proxy-Unencrypted-
Header: 14009 

Proxy-Unencrypted-
NoHeader: 14079 

C4.5 DR FPR 
NoProxy-Unencrypted 73.5 1.1 

Proxy-Unencrypted-Header 97.8 3 
Proxy-Unencrypted-NoHeader 95.9 4.4 

 
Naïve Bayes DR FPR 

NoProxy-Unencrypted 31.3 9.7 
Proxy-Unencrypted-Header 4.6 2.1 

Proxy-Unencrypted-NoHeader 88.2 83 
 

Balance 

NoProxy-Unencrypted: 
2323 

Proxy-Unencrypted-
Header: 2323 

Proxy-Unencrypted-
NoHeader: 2323 

C4.5 DR FPR 
NoProxy-Unencrypted 86.9 6.5 

Proxy-Unencrypted-Header 92.5 4.4 
Proxy-Unencrypted-NoHeader 86 6.4 

 
Naïve Bayes DR FPR 

NoProxy-Unencrypted 27.6 7.8 
Proxy-Unencrypted-Header 12 8.8 

Proxy-Unencrypted-NoHeader 83 72.1 
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7.1.11. “Proxy-Unencrypted-Header” vs “Proxy-Unencrypted-NoHeader”: Binary 
Classification 

In this case, our aim is to differentiate proxy unencrypted traffic with header from without 

header. Our results show over 98% detection with less than 2% false alarm rates. 

Table 25: Dataset Numbers for “Proxy-Unencrypted-Header” vs “Proxy-Unencrypted-NoHeader” Classification 

Class Dataset Number 
Proxy-Unencrypted-Header 2, 3, 6, 8, 9, 12 
Proxy-Unencrypted-NoHeader 4, 5, 7, 10, 11, 13 

 

Table 26: Results of “Proxy-Unencrypted-Header” vs “Proxy-Unencrypted-NoHeader” Classification 

Features Data set Number of Instances Results 

Netmate 

Unbalance 

Proxy-Unencrypted-Header: 
6960 

Proxy-Unencrypted-NoHeader: 
6992 

C4.5 DR FPR 
Proxy-Unencrypted-Header 98.5 1.8 

Proxy-Unencrypted-NoHeader 98.2 1.5 
 

Naïve Bayes DR FPR 
Proxy-Unencrypted-Header 30.7 21.2 

Proxy-Unencrypted-NoHeader 78.8 69.3 
 

Balance 

Proxy-Unencrypted-Header: 
6960 

Proxy-Unencrypted-NoHeader: 
6960 

C4.5 DR FPR 
Proxy-Unencrypted-Header 98.6 2 

Proxy-Unencrypted-NoHeader 98 1.7 
 

Naïve Bayes DR FPR 
Proxy-Unencrypted-Header 32.1 20.4 

Proxy-Unencrypted-NoHeader 79.6 67.9 
 

Tranalyzer 

Unbalance 

Proxy-Unencrypted-Header: 
14009 

Proxy-Unencrypted-NoHeader: 
14079 

C4.5 DR FPR 
Proxy-Unencrypted-Header 98.1 2.7 

Proxy-Unencrypted-NoHeader 97.3 1.9 
 

Naïve Bayes DR FPR 
Proxy-Unencrypted-Header 8.1 4.6 

Proxy-Unencrypted-NoHeader 95.4 91.9 
 

Balance 

Proxy-Unencrypted-Header: 
14009 

Proxy-Unencrypted-NoHeader: 
14009 

C4.5 DR FPR 
Proxy-Unencrypted-Header 98.2 2.5 

Proxy-Unencrypted-NoHeader 97.5 1.8 
 

Naïve Bayes DR FPR 
Proxy-Unencrypted-Header 7.8 4.7 

Proxy-Unencrypted-NoHeader 95.3 92.2 
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7.2. Analysis of results 

When we analyzed the results presented in section 7.1, we see that identifying proxy traffic on 

a server (host) outside of the proxy network is a very challenging problem. The main reason 

behind this is the fact that proxy behavior is very diverse. The diversity is caused by: (i) the 

different kinds of proxies used, i.e. HTTP proxy, Cache proxy, SIP proxy, etc., (ii) the location 

(relative to the client) of the proxy used, and (iii) whether the traffic is encrypted or not. 

We have looked into 11 different cases using 16 different traffic files to investigate whether 

we can differentiate such diverse traffic behaviours using a machine learning approach. Our 

results show that, our approach is promising when C4.5 machine learning technique is used to 

classify different behaviours using Netmate traffic flow exporter under balanced data set 

conditions.  

Specifically, we obtain very high performances when we try to differentiate proxy behavior 

under encrypted traffic conditions. The problem is more challenging when traffic is unencrypted. 

However, under those conditions if proxy header information is available again our performance 

is very promising. 

Table 27 shows the features employed by the trained models of C4.5 based classifier for each 

case we evaluated in section 7.1. The different evaluation cases are represented by the different 

columns of the table from 1 to 11, where: 

1: Represents “NoProxy-Unencrypted” vs “Proxy-Unencrypted” case 

2: Represents “NoProxy-Encrypted” vs “Proxy-Encrypted” case 

3: Represents “NoProxy” vs “Proxy” case 

4: Represents “NoProxy” vs “Proxy-Encrypted” vs “Proxy-Unencrypted” case 
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5: Represents “Proxy-Encrypted” vs “Proxy-Unencrypted” case 

6: Represents “NoProxy-Unencrypted” vs “Proxy-Unencrypted-Local” vs “Proxy-
Unencrypted-Remote” case 

7: Represents “NoProxy-Encrypted” vs “Proxy-Encrypted-Local” vs “Proxy-
Encrypted-Remote” case 

8: Represents “NoProxy” vs “Proxy-Local” vs “Proxy-Remote” case 

9: Represents “NoProxy-Unencrypted” vs “Proxy-Unencrypted-Cache” vs “Proxy-
Unencrypted-NoCache” case 

10: Represents "NoProxy-Unencrypted” vs “Proxy-Unencrypted-Header” vs “Proxy-
Unencrypted-NoHeader” case 

11: Represents “Proxy-Unencrypted-Header” vs “Proxy-Unencrypted-NoHeader” case 

 

Table 27: Features employed in the trained models of the classifiers 

All Features 1 2 3 4 5 6 7 8 9 10 11 
total_fpackets √ √ √ √ √ √ √ √ √ √ √ 
total_fvolume √ √ √ √  √ √ √ √ √ √ 
total_bpackets √ √ √ √  √  √ √ √ √ 
total_bvolume √ √ √ √  √ √ √ √ √ √ 
min_fpktl √ √ √ √ √ √ √ √ √ √ √ 
mean_fpktl √ √ √ √ √ √ √ √ √ √ √ 
max_fpktl √ √ √ √  √ √ √ √ √ √ 
std_fpktl √  √ √ √ √ √ √ √ √ √ 
min_bpktl √ √ √ √  √ √ √ √ √ √ 
mean_bpktl  √ √ √ √ √ √ √ √ √ √ 
max_bpktl √ √ √ √ √ √ √ √ √ √ √ 
std_bpktl √ √ √ √  √ √ √ √ √ √ 
min_fiat √ √ √ √  √ √ √ √ √ √ 
mean_fiat √ √  √  √ √ √ √ √ √ 
max_fiat √  √ √ √ √ √ √ √ √ √ 
std_fiat √  √ √  √ √ √ √ √ √ 
min_biat √ √ √ √ √ √ √ √ √ √ √ 
mean_biat  √ √ √ √ √ √ √ √ √  
max_biat √  √ √ √ √ √ √ √ √ √ 
std_biat √  √ √  √ √ √ √ √ √ 
duration √ √ √ √  √ √ √ √ √ √ 
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min_active √  √ √ √ √ √ √ √ √ √ 
mean_active √  √  √ √  √ √  √ 
max_active      √  √    
std_active    √  √ √ √ √ √  
min_idle √  √ √  √ √ √ √ √ √ 
mean_idle √  √ √ √ √  √ √   
max_idle    √  √  √ √ √ √ 
std_idle √  √  √ √  √ √ √ √ 
sflow_fpackets √  √ √  √ √ √ √ √ √ 
sflow_fbytes √  √ √ √ √  √    
sflow_bpackets    √    √    
sflow_bbytes        √  √ √ 
fpsh_cnt √  √ √ √ √ √ √ √ √ √ 
bpsh_cnt √ √ √ √ √ √ √ √ √ √ √ 
furg_cnt      √ √ √ √ √  
 burg_cnt            
total_fhlen √  √ √        
total_bhlen √  √ √    √ √ √ √ 
COUNT 30 17 31 33 17 34 27 37 33 32 30 

 

The last row of the table shows how many features out of the 44 features Netmate uses are 

important for the different evaluation cases (scenarios) studied in this work. These results 

indicate that Netmate features selected by C4.5 under different cases seems to estimate the delay 

and size of the flows similar to the passive measurement techniques used on packets but without 

their limitations.  

8. PROPOSED TRAFFIC DE-ANONYMIZER SYSTEM  

After the results obtained in section 7, we designed and developed a prototype of our 

proposed traffic de-anonymizer system based on our C4.5 machine learning based approach to 

analyze a given traffic file to identify the proxy devices. It should be noted here that our system 
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could analyze the traffic captured outside of the proxy/firewall network. In other words, it does 

not require any acess to the proxy and/or to the client. 

In this section, we show the graphical user interface (GUI) of our prototype system by giving 

screenshots, Figure 13, from each step that a user goes through while analyzing the high level 

proxy behavior in a given traffic trace using our system. As discussed earlier, to be able to use 

this system the captured network traffic traces have to be converted into traffic flows using a tool 

such as Netmate [14]. Currently, the prototype system only accepts Netmate output files with 44 

columns (features) and the .netmate extension. However, it can be extended easily to use other 

flow exporter tools if the expert wants to use a tool different than Netmate. 

 

 
Figure 13: A screenshot of the Prototype GUI 
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8.1. First Step – Data Preparation: 

If a directory is given as input, our system (prototype) will also check subdirectories 

automatically to find .netmate extension files. Therefore, if a directory with lots of subdirectories 

is given, it may take some time to search all subdirectories. It is recommended to put Netmate 

output files in a directory without subdirectories and to give to the system the exact address of 

this directory. After selecting the correct directory, the system will read all Netmate output files 

and will apply broken flow test on every flow. The outputs of this step are two files:  

(i) 39Columns: This file contains all unbroken flows. For each flow, it has 39 attributes, 

which were presented in Table 3. The format of this file is arff. 

(ii) 50Columns: This file is like the “39Columns” file except that in addition to 39 attributes, 

it has the source IP address, the source port number, the destination IP address, the destination 

port number, and the protocol for each flow. The format of this file is “comma delimited” csv. 

8.2. Second Step – Proxy Classification: 

In our GUI prototype, we have employed three classifiers, which are “Proxy” vs “No-Proxy”, 

“Encrypted Proxy” vs “Unencrypted Proxy”, and “Unencrypted Proxy with Header” vs 

“Unencrypted Proxy without Header”, based on the C4.5 models, the Netmate features, and the 

balanced training datasets. 

When the “Second Step” button is clicked, all the input traffic goes through the 

aforementioned three classifiers and then a folder called “LogFiles” is created in the program 

executable path. Log files will be separated into “Proxy” and “NoProxy” subdirectories. Each of 

these subdirectories has other subdirectories, which separate flows based on their behaviors. In 

each log file, for each flow, the source IP, the source port, the destination IP and the destination 
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port are stored. It should be noted here that when the program is running, this part might take 

several minutes to complete. Thus, when you run this step, please let the program to continue. 

When this step is completed, a popup window will appear. 

8.3. Third Step – Analyzing Proxy Behavior: 

After clicking on the Third Step button, two files with text and xml formats will be create in 

the “data” directory. The text file is the input file of the “treemap” open source software, which 

is employed for visualizing the input data in the “Rectangle View”. On the other hand, the xml 

file is the input file of the “spacetree” open source software, which is employed for visualizing 

the input data in the “Tree View”. So at this stage, the following window will appear, Figure 14. 

 

 
Figure 14: A screenshot of the window for selecting the views 

 

Clicking on the “Rectangle View” button runs “treemap” program and loads the text file as its 

input. Figure 15 is the rectangle views of the proxy classification of our dataset. 
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Figure 15: Rectangle view for the Proxy classification of the NIMS Proxy Dataset 

 

In Figure 15, the dimensions of rectangles are based on the numbers of flows of a specific 

category. As can be seen in these figures, the input data has been classified into No-Proxy 

(Yellow rectangle) and Proxy (left big rectangle). The Proxy class is also classified into 

Encrypted (Blue rectangle) and Unencrypted. The Unencrypted Proxy class is then classified into 

“Unencrypted Proxy with Header” (Green rectangle) and “Unencrypted Proxy without Header” 

(Orange rectangle).   

Clicking on the “Tree View” button runs the “spacetree” program and loads the xml file as its 

input. Figure 16 shows the classification tree views of the proxy traffic data sets. In this figure, 

the number in each node shows the number of occurrences of the specific type (class) of flow it 

represents. As can be seen in this figure, the input data has been classified into Proxy and No-

Proxy nodes based on the trained C4.5 classification models. For each of these two nodes, there 

are other sub-nodes, which are identified based on the other C4.5 trained classification models. 
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Figure 16: Tree view for classification of the NIMS Proxy Datasets 

 

Clicking on the “Flow View” button, you can see a pop up menu like Figure 17. 

 

 

Figure 17: A Screenshot of the Window of selecting the Log File Category 
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There are four options, NoProxy, Proxy-Encrypted, Proxy-Unencrypted-Header, and Proxy-

Unencrypted-NoHeader. By selecting any of the aforementioned options and then clicking on the 

Show button, the relevant log file will be presented. Figure 18 presents an example of such a log 

file. 

 

 

Figure 18: A sample of Proxy Traffic Log File 

 

In this case, the first 4 columns represents the source IP address, the fifth column is the source 

port number, the following 4 columns represents the destination IP address, and the last column 

shows the destination port number of the relevant flows, i.e. flows classified as proxy. Using this 
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information, the network administrator is able to find the Proxy traffic in the offline tcpdump 

files or may do further actions or apply some policy on ongoing proxy traffic. 

As a summary, when C4.5 based classifiers trained solutions are used to evaluate all the data 

sets employed in this research using the system we developed above, then the following results 

are obtained, Tables 28 and 29. 

 

Table 28: Confusion matrix for the prototype 

 
Predicted Labels 

Proxy-
Encrypted 

Proxy-Unencrypted-
Header 

Proxy-Unencrypted-
NoHeader 

NoProx
y 

Real 
Labels 

Proxy-Encrypted 13593 1 2 788 
Proxy-Unencrypted-

Header 2 6500 19 439 

Proxy-Unencrypted-
NoHeader 0 50 5912 1030 

NoProxy 9 4 17 2375 
 

 

Table 29: Performance of the prototype proxy traffic analysis system 

 DR FPR 
Proxy-Encrypted 94.5 0.07 

Proxy-Unencrypted-Header 93.4 0.23 
Proxy-Unencrypted-NoHeader 84.6 0.16 

NoProxy 98.8 8 
 

9. CONCLUSIONS AND FUTURE WORKS  

In this research, we perform a study to identify the traffic coming from different computers 

behind a proxy device whether the traffic is encrypted or unencrypted (clear). To this end, we 

employed a machine learning based approach using only traffic flow information. To achieve 
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this, we evaluated two learning techniques, namely C4.5 and Naïve Bayes, using two different 

flow exporter, namely Netmate and Tranalyzer, system. In doing so, not only we want to 

compare performances of different learning techniques but also compare two different flow 

feature sets given that Netmate and Tranalyzer outputs different flow features for the same traffic 

capture. Our results show that we can identify different behaviours of the computers behind a 

proxy device using the C4.5 based classifier with Netmate flow features. Moreover, we can 

perform this analysis without any access to the proxy machine or the clients behind it. Our 

analysis shows that the most challenging behaviours are hidden in the unencrypted channels and 

are under no-cache proxy traffic.  Future research will investigate different types of proxies and 

anonymizers such as Tor in both encrypted and unencrypted tunnels using different flow feature 

sets to compare against the findings in this work. 
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